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Abstract Small streams often lack reliable hydrological data. Environmental agencies play a key role in
providing such data; however, these agencies are often challenged by the growingmonitoring needs and lack
of funding. Given the spatial mismatch between observed data and small watersheds/headwaters, local
volunteers can act as potentially valuable research partners. We examine how CrowdHydrology, a citizen
science program that collects stream stage and stream temperature observations, improves a hydrologic
model of the Boyne River, Michigan, USA. Volunteers provided observations at four calibration sites with
different interarrival times of the observations. We tested whether stream stage and stream temperature
observations (measured by volunteers) improved the performance of a Soil and Water Assessment Tool
(SWAT) model of the Boyne River. Observations were integrated into the model using the ensemble Kalman
filter. This framework allowed us to integrate observation error, track the variability of model parameters,
and simulate daily streamflow and stream temperature across the watershed. Measures of daily model
performance included the Nash‐Sutcliffe efficiency, modified Nash‐Sutcliffe efficiency (Ef‐mod), refined
index of agreement (dr), and relative bias (Bias). For all calibration sites, estimates of streamflow improved
after data assimilation compared to simulations based on initial/default SWAT parameters. Different
measures of model performance emerged based on the interarrival times of the observations. Results
demonstrate that observations collected by local volunteers, with a certain temporal resolution, can improve
SWAT hydrological models and capture central tendency.

1. Introduction

Hydrologic and ecosystem models rely on observed data for both calibration and model validation.
Collection of these observed data is largely focused on locations with urban/municipal needs (e.g., flooding,
water supply), with smaller headwater streams often lacking information for the development of hydrologi-
cal models. Government environmental agencies play a key role in providing reliable hydrologic data; how-
ever, these agencies are often challenged by the growing number of monitoring needs (Cosgrove & Loucks,
2015; Hannah et al., 2011). Moreover, evidence suggests a decline in available water monitoring information
due to limited funding, weakening of infrastructure, and shifting government priorities (Hannah et al., 2011;
Ruhi et al., 2018; Vorosmarty et al., 2001). Considering the need for continued water monitoring, citizen
science applications represent a potentially promising resource for the collection of hydrological data.

Citizen science refers to the active participation of the general public in the generation of new scientific
knowledge (Buytaert et al., 2014). In water resources, citizen science contributes to the public engagement
in a scientific project via providing or analyzing data (Le Coz et al., 2016; McKinley et al., 2017; Yang &
Ng, 2017). Local volunteers can provide a wide range of information for hydrologic monitoring purposes
(Stepenuck & Genskow, 2018). For example, pictures and videos can help determine the extent of a flood
event (Le Coz et al., 2016), volunteers can use simple methods to measure streamflow (Davids et al.,
2019), and mobile phone text messages can be used to submit stream stage observations (Lowry et al.,
2019; Lowry & Fienen, 2013; Weeser et al., 2018). Water level measurements can be derived from pictures
as in CrowdWater (Seibert et al., 2019), stream level classes that represent a range of streamflow data
(Etter et al., 2020; Strobl et al., 2019; van Meerveld et al., 2017), and community‐based monitoring programs
can gather hydrometeorological or water quality data to improve the knowledge of local water resources
(Jollymore et al., 2017; Walker et al., 2016). Throughout this paper, the term “citizen” refers to a volunteer
(community member) that provided an observation and does not refer to a citizenship status.
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When volunteers provide stream stage observations, four characteristics are relevant when integrating these
types of data into a hydrological model: temporal coverage, spatial coverage, quantity, and accuracy
(Assumpção et al., 2018). These characteristics are relevant for model calibration, a phase in which these
observations are assumed to have random accuracy and larger errors than professional observations
(Aceves‐Bueno et al., 2017; Cortes Arevalo et al., 2014; Etter et al., 2018). Methods to calibrate hydrological
models includemanual calibration, optimization algorithms, Bayesian inference, and data assimilation. Due
to the characteristics of citizen science observations, data assimilation methods are suitable for integrating
this type of data into hydrological models. For instance, data assimilationmethods account for measurement
errors and the temporal evolution of model parameters while allowing for model updates as new informa-
tion becomes available (Mazzoleni et al., 2018; Moradkhani et al., 2005; Xie & Zhang, 2013). To explore
how the accuracy of these observations influences model performance, streamflow measurement errors
(observational error) can be generated from a probability distribution or a stochastic process (Etter et al.,
2018; Mazzoleni et al., 2015, 2017, 2018). For example, Mazzoleni et al. (2017) improved flood prediction
by considering observational errors to be normally distributed with zero mean and given standard deviation.
Etter et al. (2018) reported success in model calibration only when the error standard deviation between
observations (streamflow) and professional measurements was reduced by half. In their study, field surveys
were conducted to determine the typical errors between observations and professional measurements.

We hypothesize that sparse, discontinuous, spatially distributed volunteer‐provided observations (stream
stage and stream temperature) can be used to improve a semidistributed hydrological model. The
CrowdHydrology network (Lowry et al., 2019; Lowry & Fienen, 2013) was used to gather stream stage and
stream temperature observations in the Boyne River, located in Northern Michigan, United States.
Volunteers provided observations at four CrowdHydrology sites across the watershed and submitted the data
in the form of text messages. The Soil and Water Assessment Tool (SWAT), a semidistributed watershed
model, was chosen because of its ability to simulate daily streamflow and stream temperature at various
locations within a watershed (Arnold et al., 2012; Ficklin et al., 2012). The SWAT model was calibrated
and validated within a data assimilation approach that considered observational error, uncertainty of the
atmospheric forcing (rainfall and air temperature), and the temporal variability of model parameters. In
the following sections, an observation refers to a stream stage or stream temperature observation provided
by volunteers and reported via a text message system (crowdsourced data).

2. Boyne River Watershed

The Boyne River (Figure 1) is the second largest tributary flowing into Lake Charlevoix, Michigan, an inland
lake that drains into Lake Michigan. There are two branches of the Boyne River that split above the Boyne
River Hydroelectric Dam, which supplies energy for the operation of a recreational area. The hydroelectric
project consists of a reservoir with a storage capacity of 1.67 × 106 m3 and an area of 3.56 × 105 m2 at the
average pool height of 4.70 m. The existing dam embankment is 290‐m long and 7.6‐m high (Boyne,
2017). The Boyne River is an excellent salmon and trout fishery: steelhead trout (Oncorhynchus mykiss)
and salmon (Oncorhynchus spp.) are located downstream of the dam, while brook trout (Salvelinus fontina-
lis) and brown trout (Salmo trutta) can be found upstream of the dam (The Tip of the Mitt Watershed
Council, 2012). The Boyne River watershed has an area of 184 km2 and is dominated by forests (55%), agri-
culture (13%), and wetlands (10%). Glacial tills and outwash overlying Devonian age bedrock dominate the
watershed. Themean annual rainfall was 1,015mm, themean annual snowfall was 2,737 mm, and themean
air temperature was 8 °C between June of 2014 and May of 2019 (period of analysis defined in section 5.1).

We selected the Boyne River watershed because of the active participation of two community groups,
Friends of The Boyne River and Michigan Trout Unlimited. These two groups were essential for community
engagement, participation in the installation of stream gauges, and solving maintenance issues with the
CrowdHydrology infrastructure. The methods explained in a later section (section 5) could be applied to a
different watershed where CrowdHydrology instrumentation is in operation or could be deployed.

3. Data Collected by Volunteers

We utilized CrowdHydrology (www.crowdhydrology.com), a citizen science network that collects hydro-
logic data throughout the United States (Lowry & Fienen, 2013), to obtain local stream stage and stream

10.1029/2019WR026325Water Resources Research

AVELLANEDA ET AL. 2 of 18

http://www.crowdhydrology.com


temperature observations. CrowdHydrology provides an infrastructure for volunteers to send a text mes-
sage with the current stream stage and stream temperature to a server located at the University at Buffalo
(Lowry et al., 2019; Lowry & Fienen, 2013). A CrowdHydrology gauge station consists of a gauge plate
mounted in the stream with a simple sign asking that observations be sent via a text message
(Figure 2). Using Social.Water, the server transforms the format‐varying text messages into a unified for-
mat and then inserts the resulting data points into a publicly available database (Fienen & Lowry, 2012).
All sites (Figure 1) are also equipped with a digital stream temperature sensor that reports to a screen
from which volunteers can read and submit an observation (Figure 2). We worked closely with the
Friends of the Boyne River and Michigan Trout Unlimited, as well as other active stakeholders in
Boyne City, Michigan, to install gauges and address maintenance issues. The two community groups
led efforts to distribute information to the general public by circulating flyers by mail and in social media,
posting project material to their websites, hosting public presentations to the community, and supplying
information for newspaper articles/interviews. Volunteers started sending text messages in the summer of
2014 by providing stream stage observations. Stream temperature sensors were installed in the summer of
2017 near the stream gauge sites.

Observations provided by volunteers and stage‐discharge relationships are uncertain. Observations may
arrive with irregular frequency, random levels of precision, and be scarce across periods of analysis. In a pre-
vious study, Lowry and Fienen (2013) validated CrowdHydrology observations with a pressure transducer,
which revealed root‐mean‐square error of participant versus research data of about 6 mm (0.02 feet) for
stream stage, roughly the resolution of the installed Class A gauge. In‐stream temperature sensors reported
observations with a resolution of 0.06 °C (0.1 °F).

Figure 1. Map of the Boyne River watershed with the location of CrowdHydrology stations used for calibration and
validation.
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4. Hydrological Model
4.1. Model Description

We used the SWAT (version 2016/rev. 664) (Arnold et al., 1998, 2012) because it is relatively easy to setup,
can adequately simulate hydrology, and is coupled with our previously developed stream temperature
model. In the SWAT model, the water cycle is simulated based on a water balance equation where a change
in soil water content is a function of precipitation, evapotranspiration, groundwater flow, infiltration, and
surface runoff (Neitsch et al., 2011). Infiltrated water reaches the unsaturated zone and may move past
the lowest depth of the soil profile to recharge a shallow and a deep aquifer. Baseflow from the two aquifers,
lateral flow from the soil profile, and surface runoff contribute to streamflow. The described water balance is
evaluated for each hydrologic response unit (HRU)—a spatial unit with specific land use, soil type, and sur-
face slope—defined within a subbasin and then summed over all HRUs. Potential evapotranspiration was
calculated from the Penman‐Monteith equation (Monteith, 1965), and infiltration was estimated using the
curve number method (USDA, 1986). Finally, streamflow estimated at a subbasin level is routed through
the river system using a kinematic wave model (Neitsch et al., 2011). SWAT distinguishes solid and liquid
precipitation based on near‐surface temperature. When the mean daily air temperature of a subbasin is
lower than a snowfall temperature threshold, precipitation is considered solid, and it is accumulated until
snowmelt (Grusson et al., 2015; Neitsch et al., 2011). Snowmelt is controlled by air and snowpack tempera-
tures. For stream temperature, we adopted the stream temperature model for SWAT developed by Ficklin
et al. (2012). This model estimates stream temperature by considering temperature and amount of local
water contribution within a subbasin (e.g., snowmelt, groundwater, lateral flow, and surface runoff), tem-
perature and inflow volume from upstream subbasins, and heat transfer at the air‐water interface during
the streamflow travel time in a subbasin (Barnhart et al., 2014; Ficklin et al., 2012, 2013). Simulations were
run at a daily time step.

4.2. Model Input Data

The Boyne River hydrological model was implemented using meteorological data, digital elevation models,
and soil and land use maps. Precipitation and air temperature data consisted of daily records collected at a
National Oceanic and Atmospheric Administration weather station located in Boyne Falls, Michigan
(USC00200925) (Figure 1). The following spatial information was used to develop the hydrological model:
a 1/3 arc‐second USGS digital elevation model, a 30 × 30‐m land use map from the National Land Cover
Database 2011 (obtained from the MRLC Web site https://www.mrlc.gov/nlcd2011.php), and a 30 × 30‐m

Figure 2. CrowdHydrology station for Calibration Site 4: (a) stream gauge and (b) digital temperature sensor screen and instructions to send an observation via a
cell phone text message.
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soil map from the US Department of Agriculture (SSURGO database for Charlevoix County, Michigan,
obtained from the USDA Web site https://sdmdataaccess.sc.egov.usda.gov).

4.3. Model Setup

Based on topography and the natural stream network, the Boyne River watershed was divided into 104 sub-
basins. To balance a reasonable resolution of soil properties, land use distribution, and computational time
for calibration, these subbasins were divided into a total of 626 HRUs. HRUs were created based on land
uses, soils, and slope areas with coverage greater than 15% within a subbasin. Preliminary SWAT model
parameters (supporting information, Table S1) were generated using ArcSWAT (Winchell et al., 2007),
which allowed for the creation of input files from the digital maps (e.g., soil and land use maps) and internal
databases (e.g., Manning roughness coefficients, evapotranspiration coefficients). Meteorological inputs
including solar radiation, wind speed, and relative humidity were automatically generated by the weather
generator model within SWAT (Arnold et al., 2012). We adopted the simulated controlled outflow‐target
release scheme of SWAT to represent the reservoir of the Boyne River hydropower project (Jalowska &
Yuan, 2019; Neitsch et al., 2011). The reservoir is manually operated to maintain a reservoir level of
4.7 m. This operation is performed by adjusting flow through a turbine and spillways as ameans of maintain-
ing the target reservoir volume (167.7 × 104 m3). For a given day, the volume of water flowing out of the
reservoir is a function of the difference between the current volume of water in the reservoir (estimated from
the influent flow from upstream subbasins) and the target reservoir volume for a given day. Based on the
operation of the reservoir, we assumed 2 days as the number of days required to reach the target storage.
SWAT parameters for the reservoir configuration are displayed in Table S3. We assumed a warm‐up period
of 2 years to minimize the effect of the initial soil water content of the watershed.

5. Hydrological Model Calibration
5.1. Calibration and Validation Periods

The available observations were divided into periods for model calibration (data assimilation) and valida-
tion. The calibration phase for flow considered 4 years of data assimilation (discussed in the next section)
and 1 year for validation (Table 1). For stream temperature, the dataset was split into one period for calibra-
tion and one period for validation. We improved stage‐discharge relationships as more field data were gath-
ered over time and performed maintenance of field equipment as soon as our research partners detected
an issue.

5.2. Stage‐Discharge Relationships

Streamflow was derived from stream stage observations using stage‐discharge relationships. For each cali-
bration site, field observations of discharge (Q) and stream stage (H) were fitted to the following power func-
tion (World Meteorological Organization, 2010):

Q ¼ a H−bð Þc; (1)

where a is a coefficient related to the channel conditions (e.g., flow resistance, flow energy slope, and
wetted area), b is a reference level (H ≥ b), and c is an exponent related to the type of hydraulic control.
Before generating streamflow from stream stage observations and the fitted stage‐discharge relationships,
we removed unrealistic stream stage observations that fell outside a predefined range of values. For exam-
ple, the range of expected values were defined between 0 and 1 m for Calibration Site 4 (Figure 2a).

We inferred the parameters of the power function using the BaRatin method (Le Coz et al., 2014). This
method applies a Markov chain Monte Carlo sampler to capture the probability distribution of the power
function coefficients. These distributions can then be used to derive the stage‐discharge relationship and
95% uncertainty ranges. Field observations and stage‐discharge relationships for all sites are displayed in
Figure 3. The uncertainty ranges consider errorsmade by an operator whenmeasuring stream stage and velo-
city with an acoustic Doppler velocimeter, used to measure streamflow. The acoustic Doppler velocimeter
(Flowtracker 2) was deployed 14 times at each calibration site during the period of analysis. At each calibra-
tion site, the cross section of the stream was divided into 25–35 stations to measure discharge. Two vertical
dischargemeasurements (at 0.2 and 0.8 D, with D=water depth) were used to estimate discharge if the water
level was deep enough (D > 0.75 m); otherwise, only one vertical measurement (at 0.6 D) was used.
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We assumed an error of ±6 mm for water level (the resolution of the stream gauge) and integrated discharge
uncertainties reported by the instrument (vertical red error bars in Figure 3) (Cohn et al., 2013). In the field,
discharge uncertainty varied between 2% and 9% for Sites 1 and 2 and 3% and 11% for Sites 3 and 4. Discharge
uncertainty was reported by the acoustic Doppler velocimeter and was based on channel geometry and flow
conditions experienced during the discharge measurement (Kiang et al., 2009). Larger errors were expected
upstream (Sites 3 and 4) due to the shallow water conditions and less uniform streamflow beds, which pre-
vented collection of two velocity observations in the vertical direction. Based on the described approach, dis-
charges could have the following average variations from the estimated stage‐discharge relationships (solid
black lines in Figure 3): 6% for Site 1, 9% for Site 2, and 22% for the upstream sites. For example, for Site 1,
Q = 3.8 ± 0.23 m3/s when H = 8 m (3.8 m3/s × 0.06 = 0.23 m3/s). Note that the uncertainty grows with dis-
charge, but here we consider only average variation across the range of discharge values.

The accuracy of the observations (stream stage and stream temperature) contributes to the uncertainty of
streamflow and stream temperature estimates. If a participant reported a stream stage with an error that

Table 1
Time Periods Used for Calibration (Data Assimilation) and Validation of Stream Flow and Stream Temperature

Number of observations

Period Phase Site 1 Site 2 Site 3 Site 4 Total

6/1/2014–5/31/2015 Flow data assimilation (DA1) 21 41 19 8 89
6/1/2015–5/31/2016 Flow data assimilation (DA2) 36 24 18 4 82
6/1/2016–5/31/2017 Flow data assimilation (DA3) 63 19 8 7 97
6/1/2017–5/31/2018 Flow data assimilation (DA4) 58 38 28 15 139
6/1/2018–5/31/2019 Flow validation (VAL) 62 34 24 18 138
9/1/2017–8/31/2018 Temperature data assimilation (DA1) 37 31 31 13 112
9/1/2018–5/31/2019 Temperature validation (VAL) 30 16 26 14 86

Note. The number of observations is reported for each calibration site (Figure 1).

Figure 3. Estimated stage‐discharge relationships (solid black line) at four calibration sites of the Boyne River. Field observations (solid red dots) of stream stage
(H), discharge (Q), and measurement error (vertical red error bars) cover a wide range of flow conditions. The light gray area represents the 95% uncertainty
ranges. The fitted coefficients of the estimated stage‐discharge relationships are listed in Table S2.
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is three orders of magnitude (±18 mm) higher than the stream gauge resolution, discharges would deviate
up to 6% across sites. To consider this uncertainty, we assumed the observation errors to have a fixed and
common standard deviation of 25% of an observation. This deviation includes both stage‐discharge relation-
ship uncertainty and the unpredictable accuracy of an observation. We adopted the same deviation for
stream temperature observations from volunteers. A standard deviation of 10% is commonly used when
using professional observations (Vrugt et al., 2005).

5.3. Data Assimilation of Observations

Data assimilationmethods improve hydrologic models by combining predictions of an imperfect model with
observations that arrive with irregular frequency, random levels of precision, and different levels of data col-
lection across periods of analysis. We selected the ensemble Kalman filter (EnKF) because there is evidence
of its potential as a data assimilation technique for uncertain crowdsourced data (Mazzoleni et al., 2017,
2018), ability to capture possible seasonal variations in parameters (Pathiraja et al., 2016; Wu & Johnston,
2007), and capacity for the model to update parameters as soon as a cluster of observations is received.
EnKF is a well‐tested data assimilation technique in the case of nonlinear systems and has been applied
in the context of soil moisture modeling (Han et al., 2012; Patil & Ramsankaran, 2017; H. Zhang et al.,
2016; Y. Zhang et al., 2017), streamflow routing and forecasting (Mazzoleni et al., 2018; Moradkhani
et al., 2005; Vrugt et al., 2006; Xie & Zhang, 2013), and data collected by volunteers (Mazzoleni et al.,
2015, 2017, 2018). Typically, the EnKF is based upon Monte Carlo or ensemble generations where a forecast
of state variables (e.g., storage of water or energy) andmodel parameters are made by propagating an ensem-
ble of nmodel states using the updated states and parameters from a previous time step (Moradkhani et al.,
2005). In our approach, we observed streamflow and stream temperature (model output) and thus updated
only model parameters (θ) according to

θitþ1 ¼ θi−tþ1 þ Kθ byitþ1 − yitþ1

� �
; (2)

where θitþ1 represents a p × 1 array of updated parameters at time interval t = t + 1 and ith ensemble mem-

ber, with i = {1, …,n}, θi−tþ1 denotes a p × 1 array of forecast model parameters (approximations from a pre-

vious time step), byitþ1 is a 4 × 1 array of observations (i.e., streamflow or stream temperature from the four

calibration sites), yitþ1 represents a 4 × 1 array of simulated streamflow or stream temperature values

(streamflow is calculated during a first model run and then used to compute stream temperature on a sec-
ond model run), and Kθ is the p × 4 Kalman gain matrix (see below). p signifies the number of parameters
for the streamflow model (p = 27) and the temperature model (p = 6). Two types of changes were applied
to the SWAT parameters: a type 1 change means a replacement of an existing parameter value by a given
value and a type 2 change means a multiplication of an existing parameter value by (1 + a given value).
For example, a type 2 calibration applied to the soil hydraulic conductivity SOL_K = −0.25 would cause a
global relative change of preliminary SOL_K values by multiplying each existing parameter value by a fac-
tor of (1–0.25) = 0.75. Type 1 changes are the same throughout the watershed, while type 2 changes result
in spatially different parameter values throughout the watershed.

The Kalman gain matrix measures howmuch state variables or model parameters should change based on a
given observation. The Kalman gain is computed as follows:

Kθ ¼ Cθy Cyy þ R
� �−1

; (3)

where Cθy is a p × 4 error covariance matrix of the forecast parameters θi−tþ1 and simulated values yitþ1, Cyy

represents a 4 × 4 error covariance matrix of the simulated values yitþ1, and R denotes a 4 × 4 observation

error covariance matrix. A large value in the covariance matrix encourages an abrupt change of a parameter
value as the combined uncertainty in parameter and simulated streamflow or stream temperature (repre-
sented by Cθy) is larger than the uncertainty in simulated streamflow or temperature plus the uncertainty
of an observation (represented by Cyy+R). A negligible change in parameter trajectory will occur when
the uncertainty in the observation and simulated value surpasses that of a parameter and simulated value
—the Kalman gain takes a value close to zero. In the assimilation process, R = (ρ CSobs)

2 where ρ = 0.25
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and CSobs denotes a 4 × 4 matrix whose diagonal elements are populated with observed discharges or stream
temperatures and zero elsewhere.

One key step of the EnKF algorithm is the estimation of forecast parameters θi−tþ1. New forecast parameters

may suffer from overdispersion and loss of information between filter iterations. To prevent these issues, we
generated a new forecast parameter vector by perturbing parameters from a previous filter iteration and add-
ing random noise as follows (Liu, 2000; Moradkhani et al., 2005; Xie & Zhang, 2013):

θi−tþ1 ¼ αθit þ 1 − αð Þθt þ τit; (4)

τit~N 0; 1−αð Þ2var θit
� �� �

; (5)

where θit represents a p × 1 array of updated parameters at time interval t and ith ensemble member, α is a

shrinkage factor, θt is a p × 1 array of parameter means across ensemble members and time interval t, and
τit denotes a p × 1 noise array. In our approach, we adopted α = 0.95 (which means a higher weight to the
value of the ith ensemble member in equation (4)) and noise values drawn from a p variate normal distri-
bution with zero mean and variance proportional to the spread of the parameters (Liu, 2000; Moradkhani
et al., 2005).

A graphical representation of the methodology is presented in Figure 4. Stream stage observations are used
to estimate streamflow via a stage‐discharge relationship (Figures 4a and 4b). We defined sequential periods
of data assimilation during the calibration phase (Figure 4c). Each period had a different number of observa-
tions (Table 1) and allowed for model assessment. Stage‐discharge relationships were updated over time as
different field observations targeted lower and higher flows across seasons. Model assessment at the end of
an assimilation period revealed sensitivity of model parameters, allowing for model improvement when
necessary (Figure 4d). Within each assimilation period, the algorithm set a new filter iteration (t + 1) with
the arrival of a new observation (Figures 4c and 4d). Note that an observation may occur at any time and
at any of the four calibration sites. In our approach, n = 90 ensemble members defined error covariance
matrices and parameter arrays. Parameters achieved on the most recent data assimilation period defined
the most up‐to‐date calibrated model.

5.4. Measures of Model Performance

The discrepancy between simulated and observed values was measured using the Nash‐Sutcliffe efficiency
(Ef) (5), modified Nash‐Sutcliffe efficiency (Ef‐mod) ((6)), refined index of agreement (dr) ((7)), and relative
bias (Bias) ((8)):

Ef ¼ 1 −
∑M

i¼1 yi−byij j2

∑
M

i¼1
byi−yj j2

; (6)

Ef−mod ¼ 1 −
∑M

i¼1 yi−byij jj
∑M

i¼1 byi−yj jj
; (7)

dr ¼
1 −

∑M
i¼1 yi − byið Þ

c∑M
i¼1 byi − yð Þ; when∑M

i¼1 yi −byið Þ ≤ c∑M
i¼1 byi − yð Þ

c∑M
i¼1 byi − yð Þ

∑M
i¼1 yi −byið Þ − 1; when∑M

i¼1 yi −byið Þ > c∑M
i¼1 byi − yð Þ

;

8>>>><
>>>>:

(8)

Bias ¼ ∑M
i¼1 yi −byið Þ
∑M

i¼1 byið Þ ; (9)

where yi represents the ith simulated value, adopted as the mean across ensemble members, with i = {1, …,
M},M is the total number of observations,byi is the ith observed value, y is the mean of observed values,bymax

is the maximum observed value, andbymin is the minimum observed value. We adopted c = 2 for the refined
index of agreement (Willmott et al., 2012).
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The above measures of performance are dimensionless and target different features of the error term. The
Nash‐Sutcliffe efficiency (Ef) varies from −∞ to 1, with higher values indicating better agreement between
the model simulations and observations. One disadvantage of Ef is that large differences between simulated
and observed values dominate the magnitude of the error metric (due to the summation of squared terms),
thus diminishing the effect of lower observed values (Krause et al., 2005; Legates & McCabe, 1999). In con-
trast, Ef‐mod increases the sensitivity to lower observed values when j = 1, thus overcoming the higher sen-
sitivity to large differences between simulated and observed values (Krause et al., 2005). Ef‐mod ranges from
−∞ to 1, with a value of one representing a perfect match between simulated and observed values. Values of
dr are bounded between−1 and 1, with poorly performingmodels identified when dr< 0 and a perfect model
when dr = 1 (Willmott et al., 2015). Positive Bias values indicate model overestimation, whereas negative
values indicate model underestimation. These measures were computed using HydroErr, an open source
library that collects a wide range of error metric functions (Jackson et al., 2019).

6. Results
6.1. Streamflow Simulation Derived From Initial SWAT Parameters

We conducted streamflow simulations using initial/default SWAT parameters derived from available spatial
information (e.g., soils, land use, and topography). These simulations, also known as open‐loop simulations,
served as a baseline to compare results after data assimilation. The open‐loop time series simulations of
streamflow exhibited sharp vertical jumps and steep declines that are typical of urban streams (Figure 5).
This streamflow dynamic, however, does not represent the observed nature of the Boyne River, which is
further illustrated by poor model performance (−40.9 [Site 1], −18.4 [Site 2], −21.3 [Site 3], and −34.5
[Site 4] for the Nash‐Sutcliffe efficiency coefficient). This highlights the need for model calibration.

6.2. Assimilation of Streamflow Data

Trajectories for selected SWAT parameters show the ensemble spread from June 2014 to May 2018, using
n=90 ensemblemembers (Figure 6). Trajectories (gray solid lines) are presented for the available water capa-
city of the soil (SOL‐AWC), saturated hydraulic conductivity (SOL‐K), SCS runoff curve number (CN‐F), and
threshold depth ofwater in the shallow aquifer for returnflow to occur (GWQMN), and the ensemblemean is

Figure 4. Schematic of the data assimilation process of observations. (a) Stream gauge at a calibration site. (b) A stage‐discharge relationship (gray dashed line) is
derived from uncertain field observations (red dots on gray area). (c) A new observation (red dot) at t = t + 1 triggers a filter iteration (box depicted with a
red dash‐dotted line). (d) Evolution of the distribution of model parameters. Simulated values generated for each ensemble member (gray solid lines) are derived
from updated model parameters. The mean of the simulated values across ensemble members (black solid line) is estimated for model assessment.
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Figure 5. Simulated streamflow (solid black line) using initial SWAT parameters derived from available spatial information (e.g., soils, land use, and topography)
and observations provided by volunteers (solid red dots).

Figure 6. Trajectories (gray solid lines) of the ensemble members (n = 90) for the following SWAT parameters: available water capacity of the soil (SOL_AWC),
saturated hydraulic conductivity (SOL_K), SCS runoff curve number (CN‐F), and threshold depth of water in the shallow aquifer (GWQMN). The evolution
of the ensemble mean is indicated using a solid black line. Note that SOL_AWC, SOL_K, and CN_F represent a fraction that was used to change an initial
parameter value (type 2 change in Table S1) and GWQMN represents a fixed parameter value (type 1 change in Table S1).
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indicated with a solid black line. We tested a larger number of ensemble members, but 90 were deemed to
cover the overall ensemble spread, which was computed in parallel on a high‐performance computing
cluster at Indiana University. The ensemble spread covered the prior distributions (uniform distributions
defined by the lower and upper limits specified in Table S1) at the early stages of the data assimilation
process but converged to the posterior distributions as more data were assimilated. Some parameters were
more identifiable than others and reached steady posterior distributions at different times. For example,
the distribution of GWQMN converged more quickly than the others, while SOL‐K still displayed a larger
uncertainty range at the end of the assimilation phase. This behavior was expected, as the same SOL‐K
change was applied across all HRUs, but soil hydraulic conductivity can vary tremendously in space.
Periods of no observations resulted in undisturbed parameter trajectories during the winter season
(December–March), when volunteers did not provide observations due severe weather conditions. It is
important to note, though, that the Boyne River generally does not freeze during the winter due to the
substantial amount of groundwater inflow.

Streamflow (Q) was simulated with the updated parameters during the assimilation phase. At each time
interval, the SWAT model was rerun with the updated parameters using a 2‐year warm‐up period.
Simulated stream flows (solid black lines) and observations (solid red dots) from June 2014 to May 2018
are reported in Figure 7. Because the observation error is proportional to the observed streamflow, the uncer-
tainty ranges (light gray areas) are narrower during low flows and wider at higher flows. We selected the
ensemble mean (solid black line) to represent the overall dynamics of discharge, which followed a distinctive
pattern across years. In general, stream flows changed seasonally, with low flows during cold months and
higher flows early in the spring and summer. Sites 1 and 2 had more observations relative to Sites 3 and 4,
due to the proximity of Sites 1 and 2 to amore populated area (Boyne City) and accessibility to walking paths.
For the validation period from June 2018 to May 2019, simulated flows are displayed in Figure 8, which did
not consider data assimilation and used updated parameters from the last period of data assimilation (DA4,
Table 1).

The uncertainty envelope covered 75% (Site 1) and 71% (Site 2) of the observations for the fourth assimilation
period (DA4, from June 2017 to May 2018), while the envelope covered 46% (Site 3) and 40% (Site 4) of the
observations for the same period (Figure 7). We also observed increases in coverage as more data were
assimilated. For example, for Site 1, the coverage changed from 28% for the first assimilation period (DA1)
to 75% for the last assimilation period (DA4). For the validation period, the coverage of the uncertainty

Figure 7. Simulated streamflow (solid black line), 95% uncertainty ranges (light gray areas), and observations provided by volunteers (solid red dots) at calibration
sites for the data assimilation periods.
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envelope was 46% (Site 1), 52% (Site 2), 62% (Site 3), and 44% (Site 4) (Figure 8). Accurate streamflow
estimation is expected with a 95% coverage, with a lesser coverage indicating that the predictive
uncertainty is either under or overestimated.

Model performance varied across sites (Figure 9), periods of data assimilation and validation (Table 1), and
arrival frequency of observations. To characterize the frequency of the observations, we estimated the inter-
arrival time of the observations (time interval between two consecutive observations) as the median of the
distribution of interarrival times, which displayed a right‐skewed shape. For example, the interarrival time
was 2.1 days for Site 1, with a 25% percentile of 1.0 day and a 75% percentile of 6.8 days (Table 2). These arri-
val frequencies were expected as Sites 1 and 2 were more likely to be visited by volunteers.

For Sites 1 and 2 (Figure 9), Ef‐mod was −0.71 and −0.35 for the first period of data assimilation (DA1), then
increased to 0.53 and 0.41 for the last period of data assimilation (DA4). A similar trend was observed for Ef,
with a maximum value of 0.65 (Site 1) and 0.33 (Site 2) for DA4. Moreover, dr was greater than 0 for Sites 1
and 2 across data assimilation and validation periods, which highlights the ability of the model to reproduce
central tendency. For sites of lower interarrival times (Sites 3 and 4), the model performed poorly during the
assimilation periods DA1, DA2, and DA3 but slightly improved for the assimilation period DA4 and valida-
tion. There was no consistent evolution of Bias across assimilation periods and sites. Bias was 4% (Site 1), 22%
(Site 2), 51% (Site 3), and 41% (Site 4) for the last assimilation period, which shows a tendency of the model to
overestimate streamflow during this period. However, the model underestimated streamflow for Sites 1, 2,
and 4 during the validation period, with Bias ranging from −22% to −5%.

Annual rainfall varied a maximum of 10% relative to the total average rainfall of the period of analysis.
However, snowfall increased by 27% during the 2018–2019 validation period relative to the average snowfall
of the calibration period. Large errors (difference between simulated streamflow and observations) during
the spring of 2019 (Figure 8) caused the decline in the performance metrics during the validation period
(VAL in Figure 9). These errors are likely due to some parameters (SCS curve number, CN_F; surface runoff
lag‐time, SURLAG) not changing fast enough to accurately reproduce higher flows. However, these para-
meters could change faster with the assimilation of more observations. The interannual variability of

Figure 8. Simulated streamflow (solid black line), 95% uncertainty ranges (light gray areas), and observations provided by volunteers (solid red dots) for the
validation period.
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forcing events (e.g., rainfall and snowmelt events) also affected model performance during the data
assimilation period. For example, the model did not capture heavy runoff events during April of 2015 and
2018. In particular, the largest errors occurred for a rainfall event of 93 mm (five consecutive days) in
mid‐April of 2018. The smallest errors mostly occurred during the summer and fall months.

6.3. Assimilation of Stream Temperature Data

Simulated stream temperatures were calculated after the model updated watershed parameters and gener-
ated stream flows, as accurate stream temperatures are dependent on accurate flows. Simulated stream tem-
perature (solid black lines) and observations (solid red dots) are reported in Figure 10, from September 2017
to August 2018. During the winter, simulated stream temperatures were near 0.1 °C and volunteers collected
only a few observations (Site 3). Most observations were collected between March and November, and
stream temperatures increased in the spring and reached a maximum in the summer. Sites 1 and 2 show
more observations relative to Sites 3 and 4. Overall, the uncertainty ranges and temperature ensemble mean
match the observations. Simulated stream temperatures for the validation period are displayed in Figure 11
from September 2018 to May 2019.

Interarrival times in the stream temperature network were consistent
with those of the streamflow network (Table 2). Despite having only one
period of data assimilation, the uncertainty ranges and ensemble mean
quickly captured the observations. For the assimilation period, the uncer-
tainty envelope covered 81% (Site 1), 74% (Site 2), 64% (Site 3), and 84%
(Site 4). However, the uncertainty envelopes covered a lower percentage
of observations during the validation period: 33% (Site 1), 50% (Site 2),
42% (Site 3), and 57% (Site 4).

Metrics of performance show the ability of the model to estimate
stream temperature across sites (Figure 12). Despite having different
interarrival times across sites, results suggest that model performance

Table 2
Interarrival Time of the Observations

Interarrival times

Calibration site Streamflow Stream temperature

Site 1 2.1 (1.0, 6.8) 1.0 (0.5, 3.4)
Site 2 4.6 (1.0, 12.1) 1.9 (0.7,6.0)
Site 3 5.6 (1.0, 20.1) 2.8 (0.8, 10.8)
Site 4 7.1 (1.0, 37.7) 5.2 (1.0, 22.0)

Note. The 25% and 75% percentiles are in parentheses.

Figure 9. Measures of model performance for consecutive periods of data assimilation (DA1, DA2, DA3, and DA4) and validation period (VAL). The error metrics
are the Nash‐Sutcliffe efficiency (Ef), the modified Nash‐Sutcliffe efficiency (Ef‐mod), the refined index of agreement (dr), and the relative bias (Bias). For
visualization, a dashed horizontal line at 0.5 is displayed on each panel.
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was similar across sites. For example, dr > 0 for all sites and Bias ranged between −0.14 and 0.10. For site 1,
Ef‐modwas−0.17 and−0.05 for the assimilation and validation periods; however, drwas 0.55 and 0.46 for the
same periods, which highlights the ability of the model to reproduce central tendency. For Sites 3 and 4, dr

Figure 10. Simulated stream temperature (solid black line), 95% uncertainty ranges (light gray areas), and observations provided by volunteers (solid red dots) at
calibration sites and period of data assimilation.

Figure 11. Simulated stream temperature (solid black line), 95% uncertainty ranges (light gray areas), and observations provided by volunteers (solid red dots) for
the validation period.
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was 0.70 and 0.57 during the assimilation period but was slightly lower
during the validation period. There was no consistent trend in Bias, but
results suggest less overestimation for stream temperature compared to
streamflow.

7. Discussion

We trained a hydrological model for the Boyne River using distributed
observations of stream stage and stream temperature collected by volun-
teers. Observations were collected through CrowdHydrology.com, a plat-
form designed to gather, store, and process text messages containing
stream stage and stream temperature observations, at four calibration
sites of the Boyne River. Stage‐discharge relationships were derived at
each calibration site to transform stream stage observations into flows.
We used the ensemble Kalman filter to assimilate a 4‐year dataset of
streamflow and a 1‐year dataset of stream temperature, then used a
1‐year period for model validation. The novelty of this work lies in the
assimilation of sparse, discontinuous, spatially distributed observations
collected by volunteers (stream stage and stream temperature) to improve
a semidistributed hydrological model.

Our results indicate that observations collected by volunteers improved
streamflow and stream temperature simulations when compared to those
of an uncalibrated SWAT model (using initial/default SWAT parameters
derived from available spatial information). However, different model
performance metrics arose at each of the calibration sites. We posit that
the interarrival times of the observations contributed to model perfor-
mance. For example, sites located downstream performed better than sites
located upstream, where the median arrival frequency of an observation
was nearly double that of sites further down the river. Our results are con-
sistent with numerical experiments using synthetically generated obser-
vations (Etter et al., 2018; Mazzoleni et al., 2015, 2017). For example,

Etter et al. (2018) reported scenarios in which few synthetically generated observations (12 and 52), distrib-
uted throughout a year, were not informative for model calibration of a simple bucket‐type runoff model for
six Swiss catchments. In their study, the median performance of the models calibrated with such observa-
tions was not significantly better than the median performance of the models with random parameter
values. We used a different model in this study, with a range of 8–28 (Site 3) and 4–18 (Site 4) stream stage
observations per year delivering poor model performance.

Measures of model performance improved, relative to simulations with initial/default SWAT parameters,
when more observations per year were used for calibration (Sites 1 and 2). Although performance metrics
continued to vary as more observations were assimilated, model performance never reached the level
expected for a streamflow model calibrated with continuous daily professional (e.g., US Geological
Survey) observations. We speculate that the number of observations to reach a maximum level of perfor-
mance is site specific due to different arrival frequencies, concentration of observations during a specific sea-
son, bias toward a range of streamflow and stream temperature values, and environmental settings (e.g.,
perennial versus intermittent streams). For example, the Boyne River model was likely trained with low
to average streamflow conditions, so the model reproduced central tendency. Hadmore observations around
peak flows been available, model parameters would have changed over time and required more observations
to achieve a steady distribution. However, it is not reasonable to expect volunteers to collect streamflow
observations during a flood event or icy conditions due to safety reasons. The question of which streamflow
observations are more informative for model calibration is still under debate, with some researchers arguing
that samples near high flows are more valuable for model calibration (Pool et al., 2017) and others not obser-
ving an abrupt change in model performance when considering an increased number of high flow observa-
tions (Etter et al., 2018).

Figure 12. Measures of model performance for the data assimilation (DA1)
and validation periods (VAL). The metrics are the Nash‐Sutcliffe efficiency
(Ef), the modified Nash‐Sutcliffe efficiency (Ef‐mod), the refined index of
agreement (dr), and the relative bias (Bias). For visualization, a dashed
horizontal line at 0.5 is displayed on each panel.
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It is difficult to assess whether a richer dataset would have generated better performance metrics for the less
visited calibration sites. We would need to increase the frequency of observations at these sites and monitor
model performance. Our current efforts to increase volunteer engagement include hosting public lectures of
project updates to stakeholders, sending a reply text message to participants confirming that each observa-
tion was received, exploring motivations for participants to visit a site via interviews and focus groups, part-
nering with the Chamber of Commerce to promote the project using stickers to reward participation, and
developing an interactive website where volunteers can see and tailor visualizations of model results.

Several limitations of our study are important to highlight. First, this study considered only one catchment,
which prevented a broader testing of the methods across different hydrological characteristics and social set-
tings. A significant portion of this project involved regular stakeholder engagement with the Boyne River
community members in social research as to improve the meaningfulness of modeling products to the com-
munity (Hall et al., 2014, 2016). To build this relationship, we conducted interviews, disseminated the pro-
ject through presentations to members of the community, and promoted the development of a strong social
network. As CrowdHydrology transitions to a more mature and sustainable citizen science‐based research
program (Lowry et al., 2019), we expect to test various hydrological models and calibration methods across
different catchments. Second, the data splitting approach for model calibration and validation may have a
significant impact on model performance. Although the ensemble Kalman Filter allows for the parameters
to change through time, we only tested one subset of data for calibration and a subsequent dataset for vali-
dation. Several data splitting methods have been evaluated, focusing on the skewness associated with runoff
for the selection of the splitting approach (Zheng et al., 2018). Finally, it will be interesting to explore how a
different model would perform when explicitly considering stream stage observations for calibration, rather
than estimating streamflow through a stage‐discharge relationship. Some studies have demonstrated that
stream stage data can be informative for calibration, as well as the use of water level class observations
(Etter et al., 2020; Seibert & Vis, 2016).

8. Conclusion and Recommendations

Our findings suggest that observations collected by volunteers can improve the performance of complex
hydrologic models. Through a citizen science network (CrowdHydrology), volunteers submitted stream
stage and stream temperature observations to guide the calibration of a SWAT model of the Boyne River
watershed. We implemented the ensemble Kalman filter to sequentially assimilate uncertain observations
and assess the temporal variability of model parameters. After data assimilation, the hydrological model
reproduced central tendency for streamflow and stream temperature, although the model missed heavy
rainfall or snowmelt events during the spring. Across four calibration sites, better performance metrics
emerged in locations with higher interarrival times of the observations. In this citizen science project, obser-
vations arrived more frequently at calibration sites located downstream, likely because of the proximity to a
more populated area (Boyne City) and accessibility to walking paths.

Due to the nature of the observations, stream flows likely covered low to average flow conditions. Questions
remain regarding to what extent the produced models can capture higher streamflow conditions, which
could only be evaluated by measuring discharge at the highest point of the hydrograph. Although it is unrea-
sonable to expect volunteers to provide these observations due to safety concerns, alternative low‐cost mon-
itoring techniques can be explored and such data integrated with observations collected by volunteers.
Future citizen science projects andmodeling efforts can provide empirical evidence regarding finer temporal
resolutions, coupling with other types of observations (e.g., pictures, videos) and integration with common
hydrologic data sources (e.g., government‐funded environmental agencies). We expect a continuous growth
of the number of observations collected by volunteers due to the active participation of our research part-
ners; thus, our current approach can be further tested over a longer time frame.
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